JOURNAL OF COMPUTATIONAL PHYSICS147,239-264 (1998)
ARTICLE NO. CP986075

Difference Schemes for the Time Evolution
of Three-Dimensional Kinetic Equations

F. S. ZaitseV; V. V. Longinov* M. R. O'Brien;-! and R. Tanner

*Moscow State University, Moscow, RussiEuratom /UKAEA Fusion Association, Culham Science
Centre, Abingdon OX14 3DB, United Kingdopepartment of Theoretical
Mechanics, Nottingham University, NG7 2RD, United Kingdom
E-mail: zaitsev@cs.msu.su, longinov@pc615.cs.msu.su, martin.obrien@ukaea.org.uk,
robert.tanner@nottingham.ac.uk

Received January 22, 1998; revised July 30, 1998

This paper is devoted to the development of finite difference methods for the so-
lution of problems involving the three-dimensional kinetic equation with a Coulomb
collision operator. New conservative difference schemes are presented and anal-
ysed. The schemes include a new approximation for mixed derivatives and accurate
treatment of internal separatrix layers. The main advantages of the new schemes
are improved stability and accuracy which, for example, allows calculation of the
ion distribution function in thermonuclear experiments for a wider range of para-
meters. (© 1998 Academic Press
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1. INTRODUCTION

The three-dimensional kinetic equation with a Coulomb collision operator can be u
for example, to study the evolution of particle distribution functions in thermonuclear fus
tokamak experiments in the form of the three-dimensional Fokker—Planck equation [1
This is the particular case we shall consider in this paper though the numerical techn
have wider applications, e.g. for physical problems that can be described by 3D parz
equations, which include three phase space variables and time. Other codes using
implicit difference schemes to solve the Fokker—Planck equation include those by Gil
[6], Westerhofet al.[7], and Shkarofsket al. [8].

The tokamak is a torus configuration with a characteristically large magnetic field in
direction going the long way round (toroidally) and a smaller field going the short v
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FIG. 1. Cross section of a tokamak showing the components of the magnetic field.

round (poloidally); see Fig. 1. The motion of charged particles in the torus is essenti
a rapid gyration about a guiding centre with velocity parallel to the resulting helical fie
lines which map out nested flux surfaces. Due to the spatially varying magnetic field th
exist two classes of particle, those that can pass through the high field on the inside ed:
the flux surface and thus continue all the way round and those particles that become tra|
on the low field side. Thus in velocity space there exists a separatrix between these part
called the trapped/passing boundary (TPB). The fast poloidal motion through the high:
low field, the motion in the toroidal direction and the rapid gyration occur on time scal
much shorter than those for the electromagnetic field variation and the problem car
reduced in dimension by averaging over the local coordinates of gyro angle, toroidal an
and poloidal angle to give orbits characterised by three constants of the metiés,yo
(speed, a pitch-angle between the velocity vector and the magnetic field, and a flux sur
radius) [4].

In what follows, u is the exact solutionf is the numerical solution, ardis the error
between the two. In general the 3D kinetic equation for the distribution funatigith the
Coulomb collision operator has the form

i nilcnm[u], &)
where
Lnn[u] = %% (Ann% + Bnu> (2)
for m=nand
Lon{u] = ;@ai (Anmﬁ) 3)
for m=#n.

Here /g is the Jacobian term andl,m, B, are the coefficients representing collisions
and also, in our case, external heating terms. The mixed derivative coeffidignts (3)
grow large due the anisotropic nature of the heating causing numerical problems in stan
numerical schemes and thus a new method is proposed.

The outline of the paper is as follows: In Section 2 we describe the construction of 1
numerical grid on which these equations are solved. Section 3 introduces the differe
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approximations under consideration and these are applied to the kinetic equation in
tion 4. Theorems of existence and uniqueness of solutions to the equation are then disc
in Section 5 followed by stability and convergence theorems in Section 6. In Section 7
show that the solution of the difference problem is positive semi-definite (as required f
distribution function) for certain conditions. Sections 8 and 9 give examples of applicati
and performance of the advanced difference schemes.

2. GRID CONSTRUCTION IN CONSTANTS OF MOTION COORDINATES

The principles of grid construction in terms of coordinates formed from the parti
constants of motion should ensure good approximation of the distribution function
the boundaries and the enclosed area and also allow the calculation of integrals wi
acceptable accuracy. The problem is formulated in an unlimited area of velocity space
itisimportant to take into account the fact that coefficients of the Coulomb collision oper:
behave differently in different parts of phase space with the proviso that they tend to .
at large speeds.

In transition to the discrete problem for the averaged kinetic equation, it is necessa
approximate accurately the boundary conditions and conditions at the internal sepal
layer, so that the approximation of boundary conditions is not of lower order than t
for the operators of the equation. For a Neumann problem (where the derivative of
grid function is specified at the boundary), or when on the boundary of phase space
appropriate coefficient in the equation is degenerate, we shall use a so-called “flow ¢
a half step from the appropriate boundary [1]. We shall also recede a half step from
separatrix. It is possible to construct an orthogonal grid on a ptaned). The separatrix
for our problem lies in this plane, as illustrated in Fig. 2. For the Dirichlet problem (whe
the function is specified at the boundary) we shall use the usual grid with points on
boundary. The grid can be nonuniform.

m 2)
% 0,8 8, pn
Yo,max
0
YO,min 0
0 n/2 b

FIG. 2. A typical grid in the 2D plane showing an internal separatrix (TPB) for our problem. The bound:
Yo = Yomax Usually has a Dirichlet boundary condition (the function is zero). The other three boundaries t
Neumann conditions (the flux through the boundary is zero).
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We shall designate a grid variabté, n=1, 2, 3, as

X" € [Xhins Xmax 1 = 0,1, ..., Nyn, Ny + 1},

min?
= {x" X" € [Xhin Xhax -1 =1, ..., Ny }.

The nearest node of a grid in relation to the boundary of a separatrix layer is moved c
half-step. An example of a grid in a plane of variablés {o) is presented in Fig. 2.

n = {x-“ :

3. DIFFERENCE APPROXIMATION OF DIFFERENTIAL OPERATORS

Application of standard approximations without taking into account the specifics of
problem may mean that an unacceptable number of nodes on the difference grid is ust
order to reach the required accuracy. Therefore we shall construct special approximati
taking into account a priori information about the behaviour of the distribution function.

The operator in Eg. (2) may be written as a sum of two components:

1 9 ou
Ln[u] = ?— <A o T nnBnu ) + TM((]- 7n) Bal)
_ 10 u ! Ba) 4)
_ﬁﬁ< 8X”( n )>+78—”(( — 1n)Bn

with

B B
Uy = Annexp<—/ 77;\ DN gxn ) V, = exp(/%dx”).
nn nn

The functionn, € [0, 1] can be adjusted in order to raise the accuracy of the differen
approximation. The integro-interpolation method [9] results in the approximation of tl
first component of the operatd,,,

1 Voiaq fion — Vai fi
A(l) f [U ) ( ni+1li+1 n,i |>
( [ ]) Ciﬁx",i n,i+1/2 hxn.i+1
Vh,i fi = Vi1 fio
—Un,i1/2< L h -t 1)] (5)
XN,i
or
1 Anni
(A(l)[ f]) Cﬁ ] {%ﬁﬁf(exp[En’i+l} fi+l _ eXp{_En,i+1} f|)
i HIxni XN i+
Anni—
_ %@(GXp{En,i}fi —eXp{—En’i}fi_l):|’ Xin < wn, ©)
X

where fj is the grid functionj =0, ..., Nx» + 1, hynj is the grid-spacing, anlgk» ; is the
step between half-integer points of a grid,

(nnB)nl vz Pyn i

Eni = = i=1,..., Np,
! Ann,l -1/2 2 X
C| =(\/§)|7 I :1,..., an7

yn o1 4 Py ,
Pen _ Deivt P = 1. N

2
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The operator (5) or (6) approximates the first component of the operator (4) to second-«
accuracy. This differencing gives an exact solution for the prolflgim= 0. In many kinetic
problems the solution is close to the kernel of the operator over velocity (i.e., the distribu
is close to a Maxwellian); therefore it is natural to expect improved accuracy for the
problem (2) when using (6). Numerous calculations have confirmed this.

Appropriate choice of the functiop, in (4) avoids overflow or loss of accuracy in using
operator (6) in the case whefg, < By,. A suitable choice for the functiom, can be found
by minimising the loss of accuracy in operatoy,, when dealing with extreme values. We
choosey, from

exp<(778)n,i—l/2 hyn i >/exp<_(nB)n,i—1/2 E) <M
Ann,ifl/z 2 Ann,ifl/2 2 -

and set it such that

Ann,i—1/2

In M”,l},

i—1/2 = min
Mn,i-1/2 {‘ hxn,i

Bn,i-1/2

which gives 0< n, < 1 for Ay < By andn, =1 for A,n~ Bn. M, can be related to the
accuracy of the computer; e.g., Iy, can be equal to half the number of digits in the
mantissa. For solution$, close to the Maxwellian distribution, a choice of b ~ 3

in the velocity operaton =1 andn, =0 for the other operators gives accurate numeric
results on a modest grid.

For the second componedt,, in (4) it is possible to use well-known second-orde
approximations, e.g. centered differencing [9]. However, in the most complicated ca
when A, <« B, and B, changes sign, it can be better to apply an approximation wi
directed differences, taking into account the sigmBpfat each point on the grid so that

(AGI f1), = [((L = nn) Bn)is12((1 = 8iv1y2) fiza + iva2fi)

1
Ciﬁx”,i
— (A= n9n)B)i—12((A = &i—12) i + 8i—1p2 fi—1)], (7)

with

8 07 If Bn,ifl/zzos
Y27\ 1 if B2 <O0.

This approximation is obtained with the help of the integro-interpolation method. It |
first-order error but improves the stability of calculations.
Finally the operatoL,, is approximated by the sum of (6) and (7),

(Am D1 = (AR, + (ARLTD);. ®)
For operatorsAn, at n #m, apart from well-known approximations [9], we propose th

following nonstandard 9-point approximation, which at each point of the grid uses not rr
than seven of nine possible nodes (see Fig. 3),
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FIG. 3. Discretisation showing the seven nodes used if #ghi_1/2 ; and Anmis1/2,; are positive.

1 omi+1]
(Anm[ TDij = 26y | inx:',l:lj (fipajea — fipap) + anm'ﬂj (fij = fij-1)
+
S LR f.,)—a”’“”(fu -1~ fizaj-0)
h><m.j+1 h
anhm|+1j (f|+1j _ fi+1j—1) + anm|+11 (le_l_ fij)
XM, x L+l
_ Bnmij (fij — fij—0) — LY (ficgja = ficap) |
hyn Py, j 11
(xin, Xjn) € wpn X Wm, (9)
where

arTm,ij = An+m(xin—1/2v Xjn) = aﬂr
Amij = Aﬁm(xin_l/z, Xjn) = aj,
1
An+m = E[Anm + |Anm|] >0,

1
Am = E[Anm — [Anml] 0.

This approximation is obtained with the help of the integro-interpolation method. Its char:
teristic feature is that it takes into account the sigi\gf, and in some sense is an analogue
of a directed difference. Such a discretisation of the operator ensures good conditionin
the equation matrix to give a unique solution as will be shown in Section 5. The operg

Anm[ f] approximates the initial operator (3) to second order.
We shall introduce the following notation:

+ + — -
al Ami+lj 2 _ Famit1]  Gmit1] a3 Gnmia]
nmij — ’ nmij — - ’ nmij — ’
! hxm,i+l ! hxm,i+l hxm.,i . hxm,J
+ - + —
a4 Somij Gmitlj a6 _ Fami+l]  Gnmij
nmij — - Anm,i -

’ nmij — ’
hxm, j+1 hxm, j+1 ! hxm,j hxm,j
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+ + - -
B Anmi11j n Anmjj Amit1j  Bnmij
nmij — - - ’
) hx"‘,j hxm,j+l hxm,j+1 hxm,j
- + — +
A7 Gomij A8 _ Gnmij Anmiij A9 _ Gnmij
nmij — ’ nmij — - ’ nmij — .
P e Pohe o b b b

Note that as all coefficienta,,;; are nonnegative, and the coefficiens,;; are non-
positive, therﬁﬁmij >0,k=1,...,9. This leads to improved stability properties for thit

approximation (9). Usin@ﬁmyij the expression foA [ f] takes the form

1 . A A A
(Anml fDij = 2 P [aﬁm fivaj+1 — aﬁm fitaj + aﬁm fivgj—1— aﬁm fij+1
1 HIxni

+ann fij — &0 fij—1 + &l fiogjs1 — A fiogy + &5 figj-1]. (20)

(HeredX,,,= (aX,);; for all k.)

Neumann or Dirichlet boundary conditions can be immediately taken into account
well-known methods [9-11, 1] in the coefficients of operators (8), (10), retaining secc
order accuracy. In some cases special boundary conditions are requiregl-ae@fn. For
example, Neumann or Dirichlet boundary conditions are usually not adequate ag min
for modelling alpha particles in thermonuclear experiments. Zero flux=atvg min leads to
a buildup of alpha particles with low energies, whereas in reality thermalized alpha parti
(helium ash) would be removed from the plasma by processes which are difficult to mq
with kinetic codes. Setting the distribution function@t= v min to be zero would give
too few alpha particles aiyp = vomin. The introduction of losses neag = vg min Would
require knowledge of a loss coefficient. A very different approach was found to be adeq
for the description of alpha-particle behaviour in experiments. This involves a bounc
condition

— % % [Bl fo?] ’Uoivo_ash’ Bl (11)

0, Bl =< Os

3
%% [Z (Almai—um> + Byu
m=1 Vo=V0,ash
wherewg ash is the speed at which particles are considered as lost tovagh,> 0. The
whole problem is then formulated wy € [vo.ash 00). Equation (11) allows particles to
leave the solution domain and become “helium agh< vg asp due to Coulomb friction,
but it does not allow a flux into the solution domain from the cold particles.
Equation (7) withn, =0 can be used to approximate Eq. (11). Forward differencir
allows the solution of the appropriate system of linear algebraic equations.

3.1. Treatment of Separatrices in the Difference Operators

This section is relevant to the particular case being considered which necessitates tt
of a separatrix and can be ignored if internal boundaries are not of interest.

More challenging is the inclusion in the difference operators of additional condition:
an internal separatrix. For a solution of this problem we shall use the idea of the me
of extending the grid outside the area [12]. We shall continue the grid from each area
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FIG. 4. An example of the extension of a grid outside of a passing particles region in a plane of variab
(0, 6). The ghost nodes are represented by empty circles.

a separatrix across the separatrix (see Fig. 4). We shall name new nodes as “ghost n
and designate values of the required function at these nodég.lky=1, ..., ng, where

ng is the total number of introduced nodes. We shall requirerth&t greater than or equal
to the number of conditions that have to be applied at the separatrix. With the help of gt
nodes and the initial grid nodes we approximate these conditions to a required orde
accuracy. Let the number of used nodes of an initial grichhehen the approximation
of “conjunction” conditions, which connect initial and ghost nodes, can be written in tt
general form

ay ff + a2 f; + -+ +aun, fy =bufi+biafo+ - + bag fr,
a1 fy + a2 f; + - +aen, fy =barfr+boafo+ - + by fr,
a1y +agafy + -+ +aen fy = barfy+bsafo + - 4 b, £y .

If the number of ghost nodes, is greater than the number of equations, we introduc
additional relations to make the number of equations equalygtolrhe arbitrariness in
compiling additional relations can be used, for example, to simplify the equations, imprc
the accuracy of the approximation, or ensure some behaviour required near the separ
The resulting system of linear algebraic equations can be written in the matrix form

a1 a;p - a, fy b1y Din,
Q1 axp -+ an, f) b21 b,

= . |+t : fo. (12
an1 angz T angng fr;kg bngl bngnr

By solving this system, we find a representation of grid function values at ghost nodes us
values at nodes of the initial grid

n
fk* ZZCki fi, k=1,...,ng.
i=1

Now, substituting this expansion into the difference operator in place of vdltjeshich
occur near the separatrix, we arrive at an approximation which takes into account
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conjunction conditions and contains values of the grid function from nodes of the ini
grid only.

Itisimportant to note that, generally speaking, for each difference operator its own sys
(12) can be composed (e.g., for 3D kinetic problems in tokamaks, the trapped/pas
boundary condition is discussed in [4]).

4. DIFFERENCE SCHEMES FOR KINETIC PROBLEMS

We shall consider a problem with a time-dependent and unknown function-depen
differential operatoiZ, cf. Egs. (1)—(3),

% = L(t,w[u] in D x (0, T],
Uu=g inDUTp att =0, (13)
I(t,u) =y onI'p x [0, T].

HereD is the range of phase variabléy; is its boundary, and & t < T. We shall represent
operatorL(t, u) as a sum of operators,

L(t,u) =L+ Lo+ L3, (14)
where

L1 = p1lar+ paloo+ Lo+ Lo
Lo=1— pu2)Lo+ palaz+ Loz + L3z
Lz=A—-p)Lir+ A — p3)Laz+ Liz+ Lag;

i € [0, 1] are weights.
Assume that difference approximations, A,m of operatorsCy, L£nm, taking into ac-
count boundary conditions on the exterior boundaries and separatrices, are known.
For an approximate solution of problem (13) in time intettyal <t <t,.; we shall use
a two-cycle six-step splitting scheme,

fn—2/3 _ fn—l

f — Ag()\’lfﬂ—Z/:% 4 (1 — A1) fn—l)

f n-1/3 _ f n—-2/3

— = AJ(ap 13 4 (1 — ap) 17273)
fn— fn—1/3

Bf = AJ(Aaf" 4+ (1 — ag) f"13)

fn+1/3 _ ¢n (15)
= AJ(ra f™8 4 (1 —ag) 1)
§0+2/3 _ §n+1/3

_ Ag(szn+2/3+ (1— 1) fn+1/3)
T

f n+1 _ f n+2/3

B——— = AT (A F™ o (1 = Ap) £7F23)
T

A = Ax(th, T, k=1,2,3,



248 ZAITSEV ET AL.

with Ay implicitness weightsy =t, —t,_;, and " which affects the collisional coefficients
in AR, from the explicit step

"= "1 T A (tg, TP £070

The system (15) can be rewritten in the more convenient form
1 n n—-2/3 1 n n-1
;B—)\,lAl f = ;B-{-(l—)xl)Al f

1 1
<—B - A21\2> freis = <—B +(1- /\z)A2> f1-23
T T

(%B — A1A2> fl = (%B +@- Al)AQ) 423, (16)

A suitable choice for the grid function on timh layer is (f"*! + f1-1)/2.

The scheme (16) is conservative and approximate to second order over time and s
if the operatord3 and Ay are conservative, have the second order of approximation on
spatial variable, and all = 0.5. Replacement of an explicit step, for examplef@n= f"-1
is possible. It will result in a scheme of first-order approximation avesut will improve
the stability.

General ideas of the splitting algorithms are discussed in, for example, Refs. [9, 10]. (
of the new features in the proposed difference scheme is the inversion of a two-dimensi
operator on each step, as

A1 = paA1+ poApp+ Ao+ Ay
Ar = (1 — p2) Ao+ 3Asz+ Aoz + Azp
Az =1—p)A11+ (1A — p3)Asz+ A1z + Aazg.

The simultaneous inversion over two variables can be performed using, for exam
Gaussian elimination for a sparse matrix. The required number of operations on, for exar
the first step iSO(Ny: Nfz Nyz), WhereNy« is the number of nodes of the grid in théh
direction andN,. is the bandwidth of the matrix. One of the basic advantages of such
approach is the possibility of implicit use in the scheme of operators with mixed derivativ
which makes the difference scheme more stable than with an explicit occurrence of mi
derivatives.

It is necessary to note that the decomposition of an operator in more simple opera
can have drawbacks. For example, the two-dimensional operators may not retain the ell
character of an initial three-dimensional operator. However, decomposition is necessar
modern computer facilities do not yet allow us to carry out for large grids an inversion
an operator over three phase variables at once.

Previous work has investigated the properties of difference scheme (16) for positiv
semi-definite operator&y in the Hilbert space of grid functioris, , [10]. However, in the
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kinetic equation the operatorsy can change sign because of the presence of first-orc
derivatives. Therefore, the standard results are not applicable. Also, from a physical |
of view, for the problems under consideration, the properties of the numerical solutio
Banach spacé are of interest, as, for examplgf ||, is the difference analogue of
particle density. Despite the complexities mentioned, for some classes of kinetic prob!
it has been possible to prove theorems on the existence and unigueness of a solut
the difference problem with the help of some advancements to existing methods [9
It has also been possible to prove theorems about the stability and convergence ¢
difference scheme in Banach spdcg, and about the preservation of sign of the solutio
of the difference problem (e.g. required for a distribution function which should never
negative). The results are summarised in the following sections.

5. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF THE DIFFERENCE PROBLEM

All equations in the system of Egs. (16) have the same structure; therefore it is suffic
to investigate the existence and uniqueness of the solution to one of them, for exampl
first,

(%B - MAQ) 123 = (%B +(1- kl)A2> -t (17)
A1 = p1A11+ paAa+ Az + Az
To simplify we shall use the notation
f=f"28 f=f"1 A=x, A= Al

Then formula (17) becomes
1 A 1
(—B—AA) f = (—B—i—(l—k)A) f. (18)
T T

For operatot3 we consider the operator

By = fij + 0_3_(41‘” = ficgy = figajy — fij—1 = fij2), (19)
ij

wheree is a nonnegative constant factor which has the same dimensiars @be unit
operatoi3 =7 is recovered foe = 0. With the help of a Taylor expansion around the poir
(i, j) itis possible to show that, if the functianhas continuous derivatives to the require
order, ther3( f — f)/t approximates derivativéu/dt to first order over time and to second
order over space (for a nonuniform grid the second order applies at some point that
not coincide with a grid point).

The following theorems of existence and uniqueness of the solution of the syster
linear algebraic equations (18) are valid.
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THEOREM1. Let the coefficients of the problgih3) satisfy the inequalities

A8 A6
w1 U1 1(ani a2 . :
Viiig > = > — |, i=1...,N 1, )=1,..., Ny,
ﬁxlyi hxlyi LS4 = 2 <ﬁxli + ﬁxz_j Sl X
A2 A4
m1 Ugiyipe 1 ani Qo . :
Viig1 > = , 1=0,...,Nya; j=1,..., N,
ﬁxlqi hxl’i+1 I+ = 2 ﬁxl’i + ﬁxz,j x| X2 ( )
20
2 Yajyzy, 1 &2 +ég“i i=1... Nesj=1....,Ne+1
ﬁxij hxij 2,]—1_ 2 ﬁxll ﬁxz,j ’ AR} X+ LA X ’
n2 U2,j+1/2V - 1 A§.12,ij n a%l,ij i1 N j = 0 Nos
ﬁxz,j hxz,j+l j+1 = 2 ﬁxl,i ﬁxz,j ) s ey NI, s ey X2,
and
Al Uy Ugi_
Sy L2 (Vyit1— Vai) — L2 (Vi — V1i-1)
Gij Lhxei \ hyuivg XL
m2 (Uzjipe Uz j-12
+ = J—+l/(v2,j+l_V2,j)_J—l/(V2,j —Va i) || =0,
ﬁxz,j hXZ. i+1 hx2,j

i=1...,Ne;j=1,...,Nye; (22)

then the set of Eq$18) with the unit operato3 =7 has a unique solution for any> 0.

The conditions (20) mean that second-order derivative coeffici@nptsglominate the
mixed derivative coefficientd,m, N m. In general, if the conditions (20) are not valid,
this theorem of existence and unigueness can still be proved, but with a restriction on
time step. The proof of Theorem 1 will be done simultaneously with that of Theorem 2.

THEOREMZ2. Letthe time step satisfy the conditions

1 A p1 Uiy 1 éﬁzij égl,ij
- > —= Vii-1— 5 + ,
T e ﬁxl,i hxl,i 2 ﬁxl,i ﬁxij

i=1,...,NX1+1;j =1,..., Ne,

L U1,i+1/2vl_ - 1 a%ij n &1
T e ﬁxlyi hxl,i_‘_l o 2 ﬁxl,i ﬁxz,j ’
=0, Ng:j=1... Ne,
6 5 (22)
1 A m U2,j—l/2V2_ 1—} A1aij | 9auij
T e\he; hej - 2\ By Ny j ’
i=1.. . Ne:j=1... Ne+1,
A4 A2
Y 7. Uz,j+1/2V2_ 1_} a12jj n a1
T~ e ﬁxz,j hxz.j+l o 2 ﬁxl,i ﬁxz,j ’

i=1...,Ne:j=0,..., Ny,
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and

Uqgi_
(Miig1 — V1) — ;l’l Yz (V1 — Vl,il))
x1,i

1 2 [Ml <U1,i+1/2
>

T a Pxai \ xviga !
n2 (Uzjape Uzj-12
T ( i+1/ (Vajp1— Vo) — 17 (V2 —V2,j1)>:|v
ﬁxz_j hy, j+1 hxz’j

i=1...,Ne;j=1...,Ne, (23)

then the set of Eqg18) with operator B, defined by(19) with e> 0, has a unique sol-
ution.

Before passing to a proof of Theorems 1 and 2 we make four remarks.

Remarkl. The theorems are formulated for the case- 1. However, they are easily
generalized for the casg # 1 (see Eq. (4)), and, if expression (7) is used to approxime
the first derivatives, then less rigid restrictionsmoappear in Theorem 2.

Remark2. Clearly, for any bounded coefficients of the equation, it is always possi
to specifyr such that inequalities (22) and (23) are valid. If the right-hand side of a
inequality is negative, that inequality should be excluded from consideration, as it does
impose restrictions omn.

Remark3. In the “worst” case, magnitudes in the right-hand side of (22) have ort
h=2; nevertheless one may expect that the restrictiom @weaker than in, e.g. explicit
schemes, as is apparent from consideration of properties at every point of the grid.
supposition proves to be true by calculations.

Remarlkd. As will be seen from the proof of the theorems, the “directed” approximati
of mixed derivatives offered in the present work (Eq. (10)), gives “least” restriction or
when compared with standard approximations.

The proofs of Theorems 1 and 2 are now done simultaneously. We shall consider a
when the boundary conditions at a separatrix change neither the approximation (in t
of number and place of grid points used) nor the properties of operator coefficients
general, conditions (20)—(23) can vary and the operdtoray need to be changed.)

Proof. The set of Egs. (18) can be written in the matrix form
Tf=5f

The matricesT = (5/t —AA) and S= (B/t + (1— A)A) have a banded structure; the
nonzero elements, for a case when the boundary conditions at a separatrix do not cl
patterns of operators, fall only on three diagonal bands, each with a width of not more
three elements

tn  t2 0 tingt tingz O 0 0 0
1 T2 3 tont1 tong2 fongs 0 0 0
coo teeN=—1 ke N BN Tkker Tk Tekrn o tekN—1 o kN TkkeNL

0 0 0--- 0 tpp_n—1tpp_n--- O tpp_1 tpp
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Here P = N,: Ny is the total number of points of a grigy x w, andN is the number of
points over one of the directions (the band widthié)3For now letN = N,.. Values of in-
dexes irty are calculated using j as:k=(G —DNy2+ j,i=1,..., Nya, j =1,..., Ny;
I =(@{"—21)Ny+ j’,where’, |’ are nodes, included in the pattern of the operatat point
i, .

According to the approximations (8), (10) of the differential operators, the elements c
matrix T are

tek = 1 + e + A (Ul,i+1/2 n Ul’i_1/2>V1,i
T TG Gy |hei \ hajin P
w2 (Uzjtr2 | Uzj-1p 1(83,; &5
+ L+ + = V2,j _ = | + N
ﬁxz,j hxz.j+1 hxz,j 2 ﬁxl,i ﬁxz.j
[ 48 A6
e A | ma Ugio1p2 1(ap;; Qo
k1 =——— — Viic1— 3 +
TGj G _F'xl,i Py 2\ hyj Ry,
[ A2 a4
t _ _i B i 1251 Ul,i+1/2v ) _} aj_z,ij n aZLij
KL TGjj Gij Nyt hye i L+t 2\ hy; lez,j
[ 56 A8
e A ma Uzjip 1(ap;
tien=————|=——TVo 1 — = +
TGij Gij _ﬁxz,j hx2,j 2 ﬁxl,i ﬁxz’j
[ A4 A2
t R I U27i+1/2v o 1fagpj n a2 ij
KehN TGjj Gij _ﬁxz’j hxz’j 21+ 2\ hy; ﬁxz,j
M9 29 T
tk—N-1 = _ | i + Saij
Zcij L ﬁXl,i ﬁxz,j ]
- A3 U
» A | @nj) | o)
N+l = —5— =
ZCij ﬁxlj lez’j |
/\7 T
tik = A | G12ij A1 ij
N-1=—F5— | = + =——
Zcij L ﬁXl,i ﬁx2,j ]
Mal Al
ey = — o | Jr2ii | Sauij
+N+L = — 5
Zcij L ﬁXl,i ﬁx2,j ]

Matrix S has the same structure as maffixwith elementss differing fromty only in
that before the square brackets the sign is opposite and the factanges to (% A).

We shall show that the matrik is anM-matrix. A matrix A= (&;) is anM-matrix, if it
is nondegenerate;; <O foralli # j andA™1= (agl) is nonnegative, that bﬂl >0[13].
Therefore, ifT is anM-matrix, it is nondegenerate. Then for any right-hand $iddere
is a unique solution of the equatidhf = F, and thus also the set of equations (18).

To prove thafl is anM-matrix it is enough to show thdt has nonpositive nondiagonal
elements and has strict diagonal dominance [13].
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The nondiagonal elements of matfixare txk_1, tkks1, tkkeN» tkkeN» tkkeN—1, tkkoN+1.
tkkeN—_1, tkkens1. The nonpositivity oftee_1, tkki1, tkken, tkken follows from conditions
(20) or (22), and nonpositivity afk_n_1, tkkoN+1, tkkin_1, tkkener from the method of
approximating the mixed derivatives, so that the first requirement torbe anM-matrix
is satisfied.

The final requirement is to check the element3 dér strict diagonal dominance, that is

lticl > Z|tk.| k=1,...,P.
I;ﬁk

From (20) or (22)

P P
4de A | m1 (Usizipe Uti-12
[tal = —t=——+— < : Vijigr+ —2 Vi1
; ; TCij Cij ﬁxlyi hxl’i_;'_]_ I+ hxl’i :

12k 12k

p2 (Uzjt12 Uz j-1/2
+ — Voiv1+ Va1
ﬁxz.j ( hxz j+1 211 hxz’j )

1 ~
Zﬁ 1 Z( DHPa 12|J - _ g (—].)pagLij
i oo <.

p=1
p#5
Taking into account (21) or (23) and that
Z( P& = &
b5
we obtain
A w1 Uiy Ugi—12
|tkl|<—+— —{ ( : Vii + — Vi
g Tt G P \ g i I
I £k

u2 (Uzji12 Uz 12
+ Vo + Vo,
ﬁXZ’j ( hxz,j+l J hxz,j !

1 55 1 s
T s Q12 ~ op,  Gatij| = tek = [tikl-
X+, X4, ]

Thus,T is anM-matrix and Theorems 1 and 2 are proved.

From Theorems 1 and 2, existence and uniqueness of the solution of the differ
problem (16) follows. In a nonlinear case, when the coefficients of the equation der
on the function being solved for, the time step can become dependent on the numb
the time layer (as it is probably necessary to setefetr eachf). Therefore, for nonlinear
problems this method of proof does not guarantee that it is possible to reach a given
with a finite number of steps. Thus in a nonlinear case, existence and uniqueness cat
be proven for a small time interval using this method.
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6. STABILITY AND CONVERGENCE

First, we shall prove the following theorem.

THEOREM3. Let T be an M-matrix f be the solution of the equationfl= F, and f
be the solution of the equationfT= F,, with | F1| < F, valid for all the vector components.
Then|f| < f.

Proof. We shall consider a vector= f + f. Itis the solution of the equatiohv =V,
whereV = F; + F,. The vectoV has nonnegative components,

V=F+F>FR-|F >0

Further, asT is an M-matrix, it is monotonic [13]; that isTv > 0 impliesv > 0. Then
—f<f.

We shall considew = f — f. It is the solution of the equatiohw =W, where
W=F-F=<|F-FR=0

We similarly conclude thab < 0 and therefore’ < f . Then| f| < f, proving Theorem 3.
Next we consider a Banach space of grid functibag with a norm

Ny N2 Ny

=D ) HiklGichifee, A (24)

i=1 j=1 k=1

In kinetic problems this may represent an integral over velocity space coordinates to ¢
the density of particles in geometric space and therefore, for this particular norm, a st
of stability and convergence properties is of importance.

THEOREM4. Let the coefficients of an initial problet@3) satisfy the inequalitie€20),
(21). Then in the Banach space of grid functions with ng24) the schemél6) withB=7
is absolutely stable fokx =1, k=1, 2, 3, and conditionally stable fob <iy <1, k=1,
2, 3. Alsg, if the exact solution u of a problefi3) in each of the areas divided by the
separatrix has continuous derivatives and bounded derivatives of the required trder
the schemégl6) converges and has accuracy

||Zn+1||=O(Tp+h2), n:l,3,5,...,

where h= max—i23max-1_.n, hxi p=2for Ax=1/2, k=1, 2, 3; p=1otherwise.

Proof. The error of solution of a difference problem is
"= f"—u" (25)

We shall note that at =0 (i.e., t =0), and, for alln, at boundary points of a grid for a
Dirichlet problem,z" =0.

We shall consider the first equation from (16). By substituting (25) in it with the appr
priate time index, we obtain

(DR CRENERTSC
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whereyfl, is the error in approximating the first equation in a decomposed differen
problem by use of the difference equation. In a proof of stability it is possible to consi
Vilx as some known right-hand side.

As well as Eq. (26), we shall consider the equation

((}IZ—XA)w> =:<(EI+(1—AJA>RQ + |- (27)
T ijk T ijk

If the scheme is not purely implicit, that is< 1, it is necessary to impose a restriction ol
7. We shall require that /& is not less than the maximum of the moduli of the diagon:
coefficients of matrix1— A)A. In this case the right-hand side (27) will be nonnegative
as all elements of matrigZ /t + (1 — A)A) will be nonnegative. For the implicit scheme
the restriction orr is not required.

From Theorem 3, taking into account th@l/t — AA) is anM-matrix, we find

0 < |zijk| < wijk- (28)

We sum Egs. (27) with weigltjchy: ihy jhys . Since operaton is conservative, (a) the
AA term on the left-hand side sums to zero for Neumann boundary conditions or pos
terms for Dirichlet boundary conditions and (b) ttle— 1) A term on the right-hand side
sums to zero or results in nonpositive components. This gives

Nyi Ny2 N3

ZZZ Wijk Cijkhxeife jhs i < llzll + Tlly "l

i=1 j=1 k=1
Then, using (28),
Izl <zl +zliy"l. (29)

The inequality (29) means the first equation in (16) is stable. The stability of the remair
equations follows. Substituting an inequality of the form (29) in the inequality for the I
equation of (16), we have

, n=135,..., (30)

6
12 < 12 M+ (|
=1

wherey" is the error in approximating thén equation in a decomposed differential probler
using the difference equation. Taking into accojz®| = 0, inequalities (30) give

6

T ’

I < max S [y n=135.... (31)
1=1

— 2n=1..(n+1)/2

whereT=1(n+ 1). Equation (31) means the scheme (16) in the Banach space of
functions with norm (24) is stable.

To prove the convergence of the difference scheme in Banach space we shall |
modification of an existing technique [9]. We shall present errors of approximaflas

6

wln:wln_i_wln’ |=1,...,6, Zwlnzo

=1
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We shall for this purpose take
2 N 2\ 42,n
L A N A A K
2\ \m m ot2
I ou" -1 ou"
A ——1)— 1—A —=1|— |=1,2
+ '[A'T(m )E)t +( |)T< o ) } . 2,3,

ot

Ul =B

_ 1

1;97| = _¢|n9 | = 1, 2, 3, m=3.

— — — 2 2
IZ;ln__B yn+/m-1 _ n+d l)/ml_z |__1 _ |—1_1 ﬂ
- > m at2
| ou"
+ A |:)n| (un+l/m1 -7 <— - 1) i)
m ot
| —1 au"
1_)\‘ n+(|_1)/m—l_ . _1 _— s I = 11 27 37
+( |)(u “\m ot

1;” _ un—0=0/m+1 _ jn—l/m+1 N T I L 2 | —1 L 2 92un
[ T 2\ \m m at2
+ A |:)»| (un—(l—l)/m+l +7 (I— — 1) aun)
m ot
| -1 n
+1- )\.)(u"'/m+l+ r(— — 1)8i>} =321 m=3.
m ot

We shall present the error of solutionas ¢ + &, where¢ satisfies the conditions

;n-&—'m—l _ ;n-&—"—l—l

B "M 1=123,
T
n-=t41 on-Ly1 o
BS ¢ —yn,, 1=321,
T
t°=0

Taking the sum of these equations we obtain

B"=0, n=1,35
£"lforn=0,1,3,5,...and

|
;”+#—1=B—1<r wp), | =1,23,
I'=1

3 7—1 7—1
i (:Z F—l—tZl//',) =B—1(z2wp>, | =32 1
I’'=1

(Note that3~! exists, since3 is anM-matrix.)

that is,z"1 =



SCHEMES FOR 3D KINETIC EQUATIONS 257

Then, substituting = ¢ + £ in equations for, we obtain a problem fag, distinguished
from the problem foz only by the fact thaty" are substituted by

| -1
A|B_1<TZ¢|“/> + (1—M)B‘1<TZW>]’ =123

I'=1 I'=1
6

7l —|
MB (‘CZ |)+(1—X|)8_1(T Iﬁp)], | =321
I I'=1

From the stability of the difference scheme, an evaluation of the form of (3%)ifor

Il =90+ A

Iﬁ7|—1ﬁ7|"‘1\|

1
IE™H <

Taking into account the equalityz"*|| = |€"*||,n=1, 3,5, ..., we obtain, a priori, an
evaluation for the error of solution,

—

I < 5 max ZHw'

..... (n+1)/2

, h=135 ...,

I\)

or, using the boundedness of partial derivatives,
12" = OxP+h?, n=1,35,...; (32)

p=2ati=1/2; p=1 otherwise. Equation (32) means the solution of the differen
scheme will converge to the solution of the differential problem in Banach space v
the norm (24). Theorem 4 is proved.

THEOREMbS. Lett satisfy the inequalitie2), (23). Then in the Banach space of grid
functions with norn(24) the schemgl6) with an operator3, defined by(19) with e> 0,
is stable atrx =1, k=1, 2, 3. Also if the exact solution u of a probleth3) in each of the
areas divided by a separatrix is smoditte., the derivatives to some order are continupus
the schemgl6) converges and has accuracy

h2
||Zn+1||=O<—+T+h2>7 n:1,3,5,...,
T

h= maX=1.23i=1...N4 Nx,i-

Proof. In contrast to the proof of Theorem 4, the equation for the error here has

form
((Re-n)e) = (%) -+
T ijk T ijk
), = (5=
ijk T

Consider equation

7N
7N
QA
oy
|
>
N——
1S9

) + ||
ijk
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As before one can show that
0 < |zjk| < Wijk. (33)

Summing the equations far with weightcijxhy: ihy jhys « and taking into account that
operatorA is conservative, we come to the inequality

N)(l NXZ NX3
1D+ > D) e — bi—ajk — Diajk — Wij—2k — Dij 0P ife Pk
i—1 j=1 k=1
Na Neo N
<zl + iy + ZZZ €l4Zijk — Zi—1jk — Zi+1jk — Zj—1k — Zj+1kINxe Pz jhys k.
i=1 j=1k=1

With grid functionswi 1jx andz11jx we shall construct continuously differentiable func-
tionsw andz with bounded partial derivatives of the second order. Then at some point

N - N N N 2
[4wijk — Wi—1jk — Wit1jk — Wij—1k — Wij+k| < M1h

2
[4Zijk — Zi—1jk — Zi41jk — Zij—1k — Zj+1k] < M2ah

and, hence,
. 2 h?
Il < 1zl + Mh* 4+ ]|y "|| = |1zl +I(M? + IW“II)-

Then, taking into account (33),

h2
Izl < ||Z||+f(|\/|?+||1/f”||>' (34)

Substituting an inequality of the form (34) in an inequality for the last equation of scher
(16) and excludingiz"2||, we find

12— 0 h_2+ max i”W"H =0 h_2+‘C+h2
= T n=1,.., (n+1)/2|=1 | B ' |

n=1,3,5,..., which proves the stability (in the sense that the error is limited) and co
vergence of scheme (16)lat/t + r +h? — 0 in the Banach space of grid functions with
norm (24). Theorem 5 is proved.

Remarkl. Itis not possible to prove convergence for the case wihigtreis not smalll
using this method (although it is possible to state the proximity of solutions of differen
and differential problems for a small time interval). Moreover, in this case we failed to pro
convergence using both methods of power inequalities and a priori estimations. Howe
the kinetic problems in many cases satisfy the inequalities (22), (23) foh?>~¢, ¢ > 0,
and it is possible to choose, for examptes: h>~¢, satisfying inequalities (22), (23), and
h?/t — 0.
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Remark2. As well as analytic estimates, numerical study of the stability and conv
gence of scheme (16), including comparison with analytic solutions and with calculati
from two-dimensional codes, has been carried out. Research has shown that, for the irr
scheme, the restrictions erandh?/z in Theorem 5, are probably a corollary of the metho
of proof. Violation of these restrictions at = 1 only resulted in negative values emerging
in the solution at large? (i.e., large speed), even for the case whgee Z. However, the
development of instability in the model problems being considered was not observed.

7. PRESERVATION OF THE SIGN OF THE SOLUTION
OF THE DIFFERENCE PROBLEM

For our application the unknown function in the differential problem is the distributi
function of particles, or, using the terminology of probability theory, a probability densi
The distribution function must be nonnegative. Animportant question is whether the solu
of the difference problem retains this property from one time layer to the next. The follow
theorems are valid.

THEOREMG6. Let the coefficients of the probleih3) satisfy inequalitie$20), (21) and
let the initial condition be nonnegativityf® > 0. Then atiy =1, k=1, 2, 3, for scheme
(16) with B=1,

f>o0, (35)

for all whole and fractional time layers. B <Ay <1, k=1, 2, 3, the inequalities(35)
are valid for some smatt.

Proof. As before, the time-advancement equation for a new time-layer looks like
Tf=5f
whereT is anM-matrix. ThenT ~ exists,
f=T71sf

and the elements & ! are nonnegative. Thus, §f has nonnegative componenfsyvill
be nonnegative.
At xx=1,k=1, 2, 3, the operatoSis

1
S=-71.
T
Therefore, iff >0, Sf> 0 for anyr.
ForO0< ik <1,k=1, 2, 3, the operatoSis

S= %Z + (1 — i) Ax.
In this case we shall require thafis not less than the maximum of the moduli of
the diagonal coefficients of matrigcd — 1) Ax, k=1, 2,3. Then all elements of matrix
(Z/t + (1= 1) A) will be nonnegative. Therefore, if >0, Sf>0.

So from one time-layer to the next, the property of nonnegativity a§ maintained,
proving Theorem 6.
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THEOREM 7. Let the initial condition be nonnegativityf ® > 0. Then the sum of the
components of the solution of the difference schéligis nonnegative

P
> fizo0
=1

for all whole and fractional time layers if, =0in (4).

Proof. The matricesT =5/t — 1A andS=5/t + (1 — 1) A for n, =0 have the fol-
lowing property:

Then

1=1 =1 k=1 1=1

P A P P A PP P 1
=2 The=> > tafi=> i) ta=> fi7

k=1 k=1 1=1 I=1 k=1 -1

from which the theorem follows.

Remarkl. The restriction onr in Theorem 6 is not a corollary of the method of proof.
Calculations show that in “complicated” cases (with, for example, large mixed derivative
the difference solution at some points can become negative. This occurs inthe region of |
x! (i.e., speed), where the values of the solution are very (exponentially) small. Howe
the sum of components of the solution remains nonnegative for any

Remark2. In considering the scheme (15) with equations of the form

then the validity of Theorems 2 and 5 remains. By analogy to the proof of Theorem 6
is possible to show that the solution of the difference problem will be nonnegative if t
initial function is nonnegative.

8. CALCULATION OF BOOTSTRAP CURRENT

Toroidal plasmas exhibit a number of properties which are not observed in cylindri
plasmas. One of these is the existence of an additional electric current which is called
bootstrap current [14]. The bootstrap current is carried mostly by passing electrons. It
pears due to temperature and density gradients and Coulomb collisions between passin
trapped electrons. The role of the bootstrap current increases with the plasma tempere
In hot plasmas this current is expected to play an important role, which could noticea
reduce the cost of a fusion power-plant.
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The bootstrap current has been studied analytically by many authors. One of the
advanced analytic formulae is that obtained by Hirshman [15].

Besides their undoubted advantages, analytic formulae are only applicable in ce
regions. In order to calculate the bootstrap current rigorously one has to solve the
kinetic equation (1) with special boundary conditions at the internal separatrix or Tl
These conditions involve step changes in the distribution function

UyDtr,+ = (UYD)+ + (U/D) -, (36)

0
UVO)+ — UYD- = Wi (VD .+ — (VDur-) +a <3—J:)) (37)
tr.+

and continuity of the flux normal to the TPB

i 8F> <jX" BF) (jX” 8F>
- - + —_ = = e N 38
2 (IVFlax“ + 2, IVE[9X"/_ 2, IVEIOX" /4 4 9

n=1,4,5 n=14,5 n=14,5

where 4+ and “—" denote limits from regions of co- and counter-passing partictkes:+”
and ‘tr, —” denote the same, but for trapped particles, the funatieithe averaged width
of the drift trajectory [4], the flux is given by

1= G, 2, (i)
=7 (n;% Ao ) + Bnu) (39)
andF =0 is the equation for the boundary of the separatrix layer.

Equations (36)—(38) can be incorporated in the difference operators as discuss
Section 3.1, preserving particle conservation numerically.

Once the distribution function of the electrons is known, the bootstrap current den
can be calculated using integral (22), given in [4].

The main aim of the calculations in this section was to compare numerical results \
the analytic formula from [15] and to study the influence on the bootstrap current of
ferent factors in the numerical approximation of the problem. For this purpose, at exte
boundaries, conditions of zero flux were used except at boundarigsandyo min, Where
the distribution function was set to a Maxwellian distribution. The initial distribution w:
also Maxwellian.

A toroidal plasma consisting of electrons and deuterigra-€, d) was considered with
magnetic fieldBo =5.8 T, total current , =2 MA and parabolic density, temperature an
current density profiles

Ns(¥)/ng(0) = (0.9(1— (v/va)?) +0.1), ng(0) =10°m~3,
Ts(1)/Tp(0) = (0.9(1 — (y/ya)?) +0.1), Te(0) = 15keV, Ty(0) = 1 keV,
1/ = (1= (/ra)?).

The ions were assumed to have a Maxwellian distribution. Circular cross-section mag
flux surfaces were considered with major and minor radii of the tBsus 6 m andy, =1 m.

Figure 5 shows results of the numerical solution of the 3D kinetic equation (solid line) :
analytical (dashed line) calculations using the formula from [15]. One can see satisfac
agreement.
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Bootstrap current density [A/m?]

FIG.5. Bootstrap current density. The solid line shows the numerical solution, the dashed line is the analyt
result.

Several runs emphasised the importance of treating the TPB accurately. In particular,
of the usual condition of continuity of the distribution function instead of Egs. (36) ar
(37) can give over 30% lower bootstrap current. It was also found that the mixed derival
Lag,y,[u] and the nonlinear dependence of coefficients in the equation play an important 1
in formation of the bootstrap current.

9. CALCULATION OF HIGH ENERGY ION DISTRIBUTIONS

In this section we discuss some of the numerical difficulties of modelling high-energy i
behaviour in thermonuclear experiments and show how advanced approaches, descrit
the paper, can help for this application of kinetic codes.

In these problems, th8, terms in the kinetic equation (1) can become dominant i
comparison with theA,, terms. Moreover, the coefficieng, and B,, can change sign.
In this complicated case it is appropriate to use approximation (7) witfy &l0. Another
difficulty relates to the presence of the loss term and source in the kinetic equation

u
+ S

Tloss

3
au
_t = Z Enm[u] -
1

ad
n,m=

Losses can be large (i.eossis small), so from the point of view of stability it is better to take
it fully implicitly in the scheme. The source can have a delta-function-like dependence
phase space coordinates and requires use of a nonuniform grid and care in the transforrn
for local coordinates and calculation of integralsSofrhe loss and the source terms can be
spread between the first three equations in scheme (15) using weights which sum to
and used symmetrically in the last three equations of (15).

In many advanced magnetic fusion devices it is important to take into account the
viations of drift trajectories from magnetic flux surfaces for high energy ions [4, 16]. Th
results in complicated formulae fak,,, By, S, etc. (see [4]), which require the order of
O(NP) arithmetic operations. The authors have developed fast algorithms for the calct
tion of trajectory-averaged coefficients—the presentation of these will be the subject «
later paper. Fast algorithms become extremely important, e.g. for alpha-particle simulati
since the coefficients are usually time dependent and have to be frequently updated d
calculations.
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The methods described in this paper were successfully used for the numerical sin
tion of alpha-particle behaviour in past and recent thermonuclear experiments on JE
TFTR [e.g. 16], allowing accurate calculation of the alpha-particle energy transferred tc
background plasma and the accumulation of helium ash modelled using Eq. (11).

It is important to use Eq. (11) in the numerical scheme, otherwise the alpha-par
distribution at low speeds accumulates excessively.

In Ref. [16] results of the presented numerical scheme were compared with resul
an alternative approach, based on a Monte-Carlo method. The global characteristics ¢
alpha particles, e.g. their heating of the background plasma appeared to be very c
However, the approach based on finite differences has noticeable advantages. In par
statistical noise is always present in Monte-Carlo methods, which can require unaccep
large numbers of alpha particles to produce smooth distribution functions [18]. The mef
based on the averaged 3D kinetic equation and finite differences allows one to obtain sn
distributions within a reasonable calculation time, which can be used not just for compar
with experimental measurements of particle distributions (e.g. to study MHD instabilit
associated with fast particle distributions), but also as input to other codes.

10. CONCLUSIONS

Numerical methods for the solution of problems for multidimensional kinetic equatic
with the Coulomb collision operator have been developed. The approach used is bas
the method of finite differences. Various conservative difference schemes for a nume
solution of mixed problems for the kinetic equation are presented and theoretically
numerically investigated. A series of difficulties, related to details of the operators of
kinetic equation which hamper application of the standard theorems of the theory of
ference schemes, have been overcome. For some classes of coefficients of the eqt
proofs have been presented of (a) theorems of existence and uniqueness of the solut
the discrete problem, (b) a theorem about absolute stability and convergence in the Bz
spacelq h (related to the particle density in a kinetic problem), and (c) nonnegativity of t
numerical solution. With some easing of the requirements on coefficients these theoren
proved with a restriction on the time step. The methods presented are successfully us
two of the most advanced kinetic codes, FPP-3D and BANDIT-3D, for modelling tokan
plasmas. The application to specific kinetic problems, i.e. the calculation of alpha-par
distributions and bootstrap currents, have been described.
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